题目链接
解题思路
本题的 O ( n ) O(n) O ( n ) 做法已有,不多说。
@lailai0916 在他的题解 中给出了使用数学工具进行归纳的 O ( 1 ) O(1) O ( 1 ) 做法,十分优雅,下面来看看人工队的表现。
设点 a a a 在第 a i a_i a i 个圆上,点 b b b 在第 b i b_i b i 个圆上,二者之间相隔 x x x 条直线(包括点 b b b 所在的直线,不包括点 a a a 所在的直线),p p p 为 ⌈ 2 m π ⌉ \left\lceil\dfrac{2m}{\pi}\right\rceil ⌈ π 2 m ⌉ 。
因此 d i s ( a , b ) = min i = 1 n ∣ a i − i ∣ + ∣ b i − i ∣ + π i x m dis({a,b})=\displaystyle\min_{i=1}^{n}|a_i-i|+|b_i-i|+\dfrac{\pi ix}{m} d i s ( a , b ) = i = 1 min n ∣ a i − i ∣ + ∣ b i − i ∣ + m πi x
所以此时题目要求的就是:
∑ a i = 0 n ∑ b i = 0 n ∑ x = 0 2 m min i = 0 n ( ∣ a i − i ∣ + ∣ b i − i ∣ + π i x m ) × 2 m \displaystyle\sum_{a_i=0}^{n}\sum_{b_i=0}^{n}\sum_{x=0}^{2m}\min_{i=0}^{n}(|a_i-i|+|b_i-i|+\dfrac{\pi ix}{m})\times 2m a i = 0 ∑ n b i = 0 ∑ n x = 0 ∑ 2 m i = 0 min n ( ∣ a i − i ∣ + ∣ b i − i ∣ + m πi x ) × 2 m
我们注意到,i i i 必定小于等于 min ( a i , b i ) \min(a_i,b_i) min ( a i , b i ) ,并且两点之间的最短路一定是经过圆心或者只经过一条线段再经过一条圆弧(仅取决于两个点所在直线的角度大小)的,于是我们就得到:
a n s = 4 m × ∑ a i = 1 n ∑ b i = a i + 1 n ∑ x = 1 m − 1 { a i + b i π x m > 2 b i − a i + π a i x m π x m < 2 + 2 m × ∑ a i = 1 n ∑ b i = a i + 1 n 2 b i + ∑ b i = 1 n b i × 2 m + 2 m × ∑ a i = 1 n ∑ x = 1 m − 1 { 2 a i π x m > 2 π a i x m π x m < 2 + 2 m × ∑ a i = 1 n a i = 2 m × ( 2 × ∑ a i = 1 n ∑ b i = a i + 1 n ∑ x = 1 m − 1 { a i + b i π x m > 2 b i − a i + π a i x m π x m < 2 + ∑ a i = 1 n ∑ b i = a i + 1 n 2 b i + ∑ b i = 1 n b i + ∑ a i = 1 n ∑ x = 1 m − 1 { 2 a i π x m > 2 π a i x m π x m < 2 + ∑ a i = 1 n a i ) = 2 m × ( 2 × ( ∑ a i = 1 n ∑ b i = a i + 1 n ∑ x = 1 p − 1 ( b i − a i + π a i x m ) + ∑ a i = 1 n ∑ b i = a i + 1 n ∑ x = p m − 1 ( a i + b i ) ) + ∑ a i = 1 n ∑ b i = a i + 1 n 2 b i + ∑ b i = 1 n b i + ∑ a i = 1 n ∑ x = 1 p − 1 π a i x m + ∑ a i = 1 n ∑ x = p m − 1 2 a i + ∑ a i = 1 n a i ) \begin{aligned}
ans &=
4m\times
\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}\sum_{x=1}^{m-1}\begin{cases}
a_i+b_i & \dfrac{\pi x}{m}>2 \\
b_i-a_i+\dfrac{\pi a_ix}{m} & \dfrac{\pi x}{m}<2
\end{cases}
+2m\times\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}2b_i
+\sum_{b_i=1}^{n}b_i\times2m
+2m\times
\sum_{a_i=1}^{n}\sum_{x=1}^{m-1}\begin{cases}
2a_i & \dfrac{\pi x}{m}>2 \\
\dfrac{\pi a_ix}{m} & \dfrac{\pi x}{m}<2
\end{cases}
+2m\times\sum_{a_i=1}^{n}a_i \\
&=
2m\times(
2\times\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}\sum_{x=1}^{m-1}\begin{cases}
a_i+b_i & \dfrac{\pi x}{m}>2 \\
b_i-a_i+\dfrac{\pi a_ix}{m} & \dfrac{\pi x}{m}<2
\end{cases}
+\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}2b_i
+\sum_{b_i=1}^{n}b_i
+\sum_{a_i=1}^{n}\sum_{x=1}^{m-1}\begin{cases}
2a_i & \dfrac{\pi x}{m}>2 \\
\dfrac{\pi a_ix}{m} & \dfrac{\pi x}{m}<2
\end{cases}
+\sum_{a_i=1}^{n}a_i) \\
&=
2m\times(
2\times(
\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}\sum_{x=1}^{p-1}(b_i-a_i+\dfrac{\pi a_ix}{m})
+\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}\sum_{x=p}^{m-1}(a_i+b_i))
+\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}2b_i
+\sum_{b_i=1}^{n}b_i
+\sum_{a_i=1}^{n}\sum_{x=1}^{p-1}\dfrac{\pi a_ix}{m}
+\sum_{a_i=1}^{n}\sum_{x=p}^{m-1}2a_i
+\sum_{a_i=1}^{n}a_i) \\
\end{aligned} an s = 4 m × a i = 1 ∑ n b i = a i + 1 ∑ n x = 1 ∑ m − 1 ⎩ ⎨ ⎧ a i + b i b i − a i + m π a i x m π x > 2 m π x < 2 + 2 m × a i = 1 ∑ n b i = a i + 1 ∑ n 2 b i + b i = 1 ∑ n b i × 2 m + 2 m × a i = 1 ∑ n x = 1 ∑ m − 1 ⎩ ⎨ ⎧ 2 a i m π a i x m π x > 2 m π x < 2 + 2 m × a i = 1 ∑ n a i = 2 m × ( 2 × a i = 1 ∑ n b i = a i + 1 ∑ n x = 1 ∑ m − 1 ⎩ ⎨ ⎧ a i + b i b i − a i + m π a i x m π x > 2 m π x < 2 + a i = 1 ∑ n b i = a i + 1 ∑ n 2 b i + b i = 1 ∑ n b i + a i = 1 ∑ n x = 1 ∑ m − 1 ⎩ ⎨ ⎧ 2 a i m π a i x m π x > 2 m π x < 2 + a i = 1 ∑ n a i ) = 2 m × ( 2 × ( a i = 1 ∑ n b i = a i + 1 ∑ n x = 1 ∑ p − 1 ( b i − a i + m π a i x ) + a i = 1 ∑ n b i = a i + 1 ∑ n x = p ∑ m − 1 ( a i + b i )) + a i = 1 ∑ n b i = a i + 1 ∑ n 2 b i + b i = 1 ∑ n b i + a i = 1 ∑ n x = 1 ∑ p − 1 m π a i x + a i = 1 ∑ n x = p ∑ m − 1 2 a i + a i = 1 ∑ n a i )
∑ a i = 1 n ∑ b i = a i + 1 n ∑ x = 1 p − 1 ( b i − a i + π a i x m ) = ∑ a i = 1 n ∑ b i = a i + 1 n ∑ x = 1 p − 1 π a i x m + ∑ a i = 1 n ∑ b i = a i + 1 n ∑ x = 1 p − 1 ( b i − a i ) = π m ∑ a i = 1 n ∑ b i = a i + 1 n ∑ x = 1 p − 1 a i x + ∑ a i = 1 n ∑ b i = a i + 1 n ∑ x = 1 p − 1 ( b i − a i ) = π m ∑ a i = 1 n a i ∑ b i = a i + 1 n ∑ x = 1 p − 1 x + ∑ a i = 1 n ∑ b i = a i + 1 n ∑ x = 1 p − 1 ( b i − a i ) = π m ∑ a i = 1 n a i p ( n − a i ) ( p − 1 ) 2 + ∑ a i = 1 n ∑ b i = a i + 1 n ∑ x = 1 p − 1 ( b i − a i ) \begin{aligned}
\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}\sum_{x=1}^{p-1}(b_i-a_i+\dfrac{\pi a_ix}{m})
&=
\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}\sum_{x=1}^{p-1}\dfrac{\pi a_ix}
{m}+\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}\sum_{x=1}^{p-1}(b_i-a_i)\\
&=
\dfrac{\pi}{m}\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}\sum_{x=1}^{p-1}a_ix
+\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}\sum_{x=1}^{p-1}(b_i-a_i)\\
&=
\dfrac{\pi}{m}\sum_{a_i=1}^{n}a_i\sum_{b_i=a_i+1}^{n}\sum_{x=1}^{p-1}x
+\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}\sum_{x=1}^{p-1}(b_i-a_i)\\
&=
\dfrac{\pi}{m}\sum_{a_i=1}^{n}a_i\dfrac{p(n-a_i)(p-1)}{2}
+\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}\sum_{x=1}^{p-1}(b_i-a_i)\\
\end{aligned} a i = 1 ∑ n b i = a i + 1 ∑ n x = 1 ∑ p − 1 ( b i − a i + m π a i x ) = a i = 1 ∑ n b i = a i + 1 ∑ n x = 1 ∑ p − 1 m π a i x + a i = 1 ∑ n b i = a i + 1 ∑ n x = 1 ∑ p − 1 ( b i − a i ) = m π a i = 1 ∑ n b i = a i + 1 ∑ n x = 1 ∑ p − 1 a i x + a i = 1 ∑ n b i = a i + 1 ∑ n x = 1 ∑ p − 1 ( b i − a i ) = m π a i = 1 ∑ n a i b i = a i + 1 ∑ n x = 1 ∑ p − 1 x + a i = 1 ∑ n b i = a i + 1 ∑ n x = 1 ∑ p − 1 ( b i − a i ) = m π a i = 1 ∑ n a i 2 p ( n − a i ) ( p − 1 ) + a i = 1 ∑ n b i = a i + 1 ∑ n x = 1 ∑ p − 1 ( b i − a i )
π m ∑ a i = 1 n a i p ( n − a i ) ( p − 1 ) 2 = π 2 m ∑ a i = 1 n a i p ( n − a i ) ( p − 1 ) = π 2 m ∑ a i = 1 n ( a i n − a i 2 ) ( p 2 − p ) = π ( p 2 − p ) 2 m ∑ a i = 1 n a i n − a i 2 = π ( p 2 − p ) 2 m ( ∑ a i = 1 n a i n − ∑ a i = 1 n a i 2 ) = π ( p 2 − p ) 2 m ( n 2 ( n + 1 ) 2 − n ( n + 1 ) ( 2 n + 1 ) 6 ) = π ( p 2 − p ) 2 m ( 3 n 2 ( n + 1 ) − n ( n + 1 ) ( 2 n + 1 ) 6 ) = ( p 2 − p ) ( 3 n 2 ( n + 1 ) − n ( n + 1 ) ( 2 n + 1 ) ) π 12 m = ( p 2 − p ) ( 3 n 3 + 3 n 2 − n ( 2 n 2 + 3 n + 1 ) ) π 12 m = ( p 2 − p ) ( 3 n 3 + 3 n 2 − 2 n 3 − 3 n 2 − n ) π 12 m = ( p 2 − p ) ( n 3 − n ) π 12 m \begin{aligned}
\dfrac{\pi}{m}\sum_{a_i=1}^{n}a_i\dfrac{p(n-a_i)(p-1)}{2}
&=
\dfrac{\pi}{2m}\sum_{a_i=1}^{n}a_ip(n-a_i)(p-1) \\
&=
\dfrac{\pi}{2m}\sum_{a_i=1}^{n}(a_in-a_i^2)(p^2-p) \\
&=
\dfrac{\pi(p^2-p)}{2m}\sum_{a_i=1}^{n}a_in-a_i^2 \\
&=
\dfrac{\pi(p^2-p)}{2m}(\sum_{a_i=1}^{n}a_in-\sum_{a_i=1}^{n}a_i^2) \\
&=
\dfrac{\pi(p^2-p)}{2m}(\dfrac{n^2(n+1)}{2}-\dfrac{n(n+1)(2n+1)}{6}) \\
&=
\dfrac{\pi(p^2-p)}{2m}(\dfrac{3n^2(n+1)-n(n+1)(2n+1)}{6}) \\
&=
\dfrac{(p^2-p)(3n^2(n+1)-n(n+1)(2n+1))\pi}{12m} \\
&=
\dfrac{(p^2-p)(3n^3+3n^2-n(2n^2+3n+1))\pi}{12m} \\
&=
\dfrac{(p^2-p)(3n^3+3n^2-2n^3-3n^2-n)\pi}{12m} \\
&=
\dfrac{(p^2-p)(n^3-n)\pi}{12m} \\
\end{aligned} m π a i = 1 ∑ n a i 2 p ( n − a i ) ( p − 1 ) = 2 m π a i = 1 ∑ n a i p ( n − a i ) ( p − 1 ) = 2 m π a i = 1 ∑ n ( a i n − a i 2 ) ( p 2 − p ) = 2 m π ( p 2 − p ) a i = 1 ∑ n a i n − a i 2 = 2 m π ( p 2 − p ) ( a i = 1 ∑ n a i n − a i = 1 ∑ n a i 2 ) = 2 m π ( p 2 − p ) ( 2 n 2 ( n + 1 ) − 6 n ( n + 1 ) ( 2 n + 1 ) ) = 2 m π ( p 2 − p ) ( 6 3 n 2 ( n + 1 ) − n ( n + 1 ) ( 2 n + 1 ) ) = 12 m ( p 2 − p ) ( 3 n 2 ( n + 1 ) − n ( n + 1 ) ( 2 n + 1 )) π = 12 m ( p 2 − p ) ( 3 n 3 + 3 n 2 − n ( 2 n 2 + 3 n + 1 )) π = 12 m ( p 2 − p ) ( 3 n 3 + 3 n 2 − 2 n 3 − 3 n 2 − n ) π = 12 m ( p 2 − p ) ( n 3 − n ) π
∑ a i = 1 n ∑ b i = a i + 1 n ∑ x = 1 p − 1 ( b i − a i ) = ( p − 1 ) ∑ a i = 1 n ∑ b i = a i + 1 n ( b i − a i ) = ( p − 1 ) ( ∑ a i = 1 n ∑ b i = a i + 1 n b i − ∑ a i = 1 n ∑ b i = a i + 1 n a i ) = ( p − 1 ) ( ∑ a i = 1 n ( n − a i ) ( a i + n + 1 ) 2 − ∑ a i = 1 n ∑ b i = a i + 1 n a i ) = ( p − 1 ) ( ∑ a i = 1 n ( n 2 + n − a i 2 − a i ) 2 − ∑ a i = 1 n ∑ b i = a i + 1 n a i ) = ( p − 1 ) ( ∑ a i = 1 n n 2 + ∑ a i = 1 n n − ∑ a i = 1 n a i 2 − ∑ a i = 1 n a i 2 − ∑ a i = 1 n ∑ b i = a i + 1 n a i ) = ( p − 1 ) ( n 3 + n 2 − n ( n + 1 ) ( 2 n + 1 ) 6 − n ( n + 1 ) 2 2 − ∑ a i = 1 n ∑ b i = a i + 1 n a i ) = ( p − 1 ) ( 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) 12 − ∑ a i = 1 n ∑ b i = a i + 1 n a i ) = ( p − 1 ) ( 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) 12 − ∑ a i = 1 n a i ( n − a i ) ) = ( p − 1 ) ( 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) 12 − ∑ a i = 1 n a i n − a i 2 ) = ( p − 1 ) ( 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) 12 − ∑ a i = 1 n a i n + ∑ a i = 1 n a i 2 ) = ( p − 1 ) ( 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) 12 − n 2 ( n + 1 ) 2 + n ( n + 1 ) ( 2 n + 1 ) 6 ) = ( p − 1 ) ( 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) 12 − 6 n 2 ( n + 1 ) 12 + 2 n ( n + 1 ) ( 2 n + 1 ) 12 ) = ( p − 1 ) ( 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) − 6 n 2 ( n + 1 ) + 2 n ( n + 1 ) ( 2 n + 1 ) 12 ) = ( p − 1 ) ( 6 n 3 + 6 n 2 − 3 n 2 − 3 n − 6 n 3 − 6 n 2 + n ( 2 n 2 + 3 n + 1 ) 12 ) = ( p − 1 ) ( 6 n 3 + 6 n 2 − 3 n 2 − 3 n − 6 n 3 − 6 n 2 + 2 n 3 + 3 n 2 + n 12 ) = ( p − 1 ) ( n 3 − n 6 ) \begin{aligned}
\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}\sum_{x=1}^{p-1}(b_i-a_i)
&=
(p-1)\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}(b_i-a_i)\\
&=
(p-1)(\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}b_i-\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}a_i)\\
&=
(p-1)(\sum_{a_i=1}^{n}\dfrac{(n-a_i)(a_i+n+1)}{2}-\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}a_i)\\
&=
(p-1)(\dfrac{\sum_{a_i=1}^{n}(n^2+n-a_i^2-a_i)}{2}-\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}a_i)\\
&=
(p-1)(\dfrac{\sum_{a_i=1}^{n}n^2+\sum_{a_i=1}^{n}n-\sum_{a_i=1}^{n}a_i^2
-\sum_{a_i=1}^{n}a_i}{2}-\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}a_i)\\
&=
(p-1)(\dfrac{n^3+n^2-\dfrac{n(n+1)(2n+1)}{6}
-\dfrac{n(n+1)}{2}}{2}-\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}a_i)\\
&=
(p-1)(\dfrac{6n^3+6n^2-n(n+1)(2n+1)
-3n(n+1)}{12}-\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}a_i)\\
&=
(p-1)(\dfrac{6n^3+6n^2-n(n+1)(2n+1)-3n(n+1)}{12}
-\sum_{a_i=1}^{n}a_i(n-a_i))\\
&=
(p-1)(\dfrac{6n^3+6n^2-n(n+1)(2n+1)-3n(n+1)}{12}
-\sum_{a_i=1}^{n}a_in-a_i^2)\\
&=
(p-1)(\dfrac{6n^3+6n^2-n(n+1)(2n+1)-3n(n+1)}{12}
-\sum_{a_i=1}^{n}a_in+\sum_{a_i=1}^{n}a_i^2)\\
&=
(p-1)(\dfrac{6n^3+6n^2-n(n+1)(2n+1)-3n(n+1)}{12}
-\dfrac{n^2(n+1)}{2}+\dfrac{n(n+1)(2n+1)}{6})\\
&=
(p-1)(\dfrac{6n^3+6n^2-n(n+1)(2n+1)-3n(n+1)}{12}
-\dfrac{6n^2(n+1)}{12}+\dfrac{2n(n+1)(2n+1)}{12})\\
&=
(p-1)(\dfrac{6n^3+6n^2-n(n+1)(2n+1)-3n(n+1)
-6n^2(n+1)+2n(n+1)(2n+1)}{12})\\
&=
(p-1)(\dfrac{6n^3+6n^2-3n^2-3n-6n^3-6n^2+n(2n^2+3n+1)}{12})\\
&=
(p-1)(\dfrac{6n^3+6n^2-3n^2-3n-6n^3-6n^2+2n^3+3n^2+n}{12})\\
&=
(p-1)(\dfrac{n^3-n}{6})\\
\end{aligned} a i = 1 ∑ n b i = a i + 1 ∑ n x = 1 ∑ p − 1 ( b i − a i ) = ( p − 1 ) a i = 1 ∑ n b i = a i + 1 ∑ n ( b i − a i ) = ( p − 1 ) ( a i = 1 ∑ n b i = a i + 1 ∑ n b i − a i = 1 ∑ n b i = a i + 1 ∑ n a i ) = ( p − 1 ) ( a i = 1 ∑ n 2 ( n − a i ) ( a i + n + 1 ) − a i = 1 ∑ n b i = a i + 1 ∑ n a i ) = ( p − 1 ) ( 2 ∑ a i = 1 n ( n 2 + n − a i 2 − a i ) − a i = 1 ∑ n b i = a i + 1 ∑ n a i ) = ( p − 1 ) ( 2 ∑ a i = 1 n n 2 + ∑ a i = 1 n n − ∑ a i = 1 n a i 2 − ∑ a i = 1 n a i − a i = 1 ∑ n b i = a i + 1 ∑ n a i ) = ( p − 1 ) ( 2 n 3 + n 2 − 6 n ( n + 1 ) ( 2 n + 1 ) − 2 n ( n + 1 ) − a i = 1 ∑ n b i = a i + 1 ∑ n a i ) = ( p − 1 ) ( 12 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) − a i = 1 ∑ n b i = a i + 1 ∑ n a i ) = ( p − 1 ) ( 12 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) − a i = 1 ∑ n a i ( n − a i )) = ( p − 1 ) ( 12 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) − a i = 1 ∑ n a i n − a i 2 ) = ( p − 1 ) ( 12 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) − a i = 1 ∑ n a i n + a i = 1 ∑ n a i 2 ) = ( p − 1 ) ( 12 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) − 2 n 2 ( n + 1 ) + 6 n ( n + 1 ) ( 2 n + 1 ) ) = ( p − 1 ) ( 12 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) − 12 6 n 2 ( n + 1 ) + 12 2 n ( n + 1 ) ( 2 n + 1 ) ) = ( p − 1 ) ( 12 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) − 6 n 2 ( n + 1 ) + 2 n ( n + 1 ) ( 2 n + 1 ) ) = ( p − 1 ) ( 12 6 n 3 + 6 n 2 − 3 n 2 − 3 n − 6 n 3 − 6 n 2 + n ( 2 n 2 + 3 n + 1 ) ) = ( p − 1 ) ( 12 6 n 3 + 6 n 2 − 3 n 2 − 3 n − 6 n 3 − 6 n 2 + 2 n 3 + 3 n 2 + n ) = ( p − 1 ) ( 6 n 3 − n )
∑ a i = 1 n ∑ b i = a i + 1 n ∑ x = 1 p − 1 ( b i − a i + π a i x m ) = ( p 2 − p ) ( n 3 − n ) π 12 m + ( p − 1 ) ( n 3 − n 6 ) = ( p − 1 ) ( p ( n 3 − n ) π 12 m + n 3 − n 6 ) = ( p − 1 ) ( p ( n 3 − n ) π 12 m + 2 m ( n 3 − n ) 12 m ) = ( p − 1 ) ( p ( n 3 − n ) π + 2 m ( n 3 − n ) 12 m ) = ( p − 1 ) ( n 3 − n ) ( p π + 2 m 12 m ) \begin{aligned}
\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}\sum_{x=1}^{p-1}(b_i-a_i+\dfrac{\pi a_ix}{m})
&=
\dfrac{(p^2-p)(n^3-n)\pi}{12m}+(p-1)(\dfrac{n^3-n}{6})\\
&=
(p-1)(\dfrac{p(n^3-n)\pi}{12m}+\dfrac{n^3-n}{6})\\
&=
(p-1)(\dfrac{p(n^3-n)\pi}{12m}+\dfrac{2m(n^3-n)}{12m})\\
&=
(p-1)(\dfrac{p(n^3-n)\pi+2m(n^3-n)}{12m})\\
&=
(p-1)(n^3-n)(\dfrac{p\pi+2m}{12m})\\
\end{aligned} a i = 1 ∑ n b i = a i + 1 ∑ n x = 1 ∑ p − 1 ( b i − a i + m π a i x ) = 12 m ( p 2 − p ) ( n 3 − n ) π + ( p − 1 ) ( 6 n 3 − n ) = ( p − 1 ) ( 12 m p ( n 3 − n ) π + 6 n 3 − n ) = ( p − 1 ) ( 12 m p ( n 3 − n ) π + 12 m 2 m ( n 3 − n ) ) = ( p − 1 ) ( 12 m p ( n 3 − n ) π + 2 m ( n 3 − n ) ) = ( p − 1 ) ( n 3 − n ) ( 12 m p π + 2 m )
化简 ∑ a i = 1 n ∑ b i = a i + 1 n ∑ x = p m − 1 ( a i + b i ) ) \sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}\sum_{x=p}^{m-1}(a_i+b_i)) ∑ a i = 1 n ∑ b i = a i + 1 n ∑ x = p m − 1 ( a i + b i )) :
∑ a i = 1 n ∑ b i = a i + 1 n ∑ x = p m − 1 ( a i + b i ) = ( m − p ) ∑ a i = 1 n ∑ b i = a i + 1 n ( a i + b i ) = ( m − p ) ( ∑ a i = 1 n ∑ b i = a i + 1 n a i + ∑ a i = 1 n ∑ b i = a i + 1 n b i ) = ( m − p ) ( n 2 ( n + 1 ) 2 − n ( n + 1 ) ( 2 n + 1 ) 6 + 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) 12 ) = ( m − p ) ( 6 n 2 ( n + 1 ) 12 − 2 n ( n + 1 ) ( 2 n + 1 ) 12 + 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) 12 ) = ( m − p ) 6 n 2 ( n + 1 ) − 2 n ( n + 1 ) ( 2 n + 1 ) + 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) 12 = ( m − p ) 6 n 3 + 6 n 2 − 3 n ( 2 n 2 + 3 n + 1 ) + 6 n 3 + 6 n 2 − 3 n 2 − 3 n 12 = ( m − p ) 6 n 3 + 6 n 2 − 3 n ( 2 n 2 + 3 n + 1 ) + 6 n 3 + 6 n 2 − 3 n 2 − 3 n 12 = ( m − p ) 6 n 3 + 6 n 2 − 6 n 3 − 9 n 2 − 3 n + 6 n 3 + 6 n 2 − 3 n 2 − 3 n 12 = ( m − p ) n 3 − n 2 \begin{aligned}
\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}\sum_{x=p}^{m-1}(a_i+b_i)
&=
(m-p)\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}(a_i+b_i)\\
&=
(m-p)(\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}a_i+\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}b_i)\\
&=
(m-p)(\dfrac{n^2(n+1)}{2}-\dfrac{n(n+1)(2n+1)}{6}+\dfrac{6n^3+6n^2-n(n+1)(2n+1)-3n(n+1)}{12})\\
&=
(m-p)(\dfrac{6n^2(n+1)}{12}-\dfrac{2n(n+1)(2n+1)}{12}+\dfrac{6n^3+6n^2-n(n+1)(2n+1)-3n(n+1)}{12})\\
&=
(m-p)\dfrac{6n^2(n+1)-2n(n+1)(2n+1)+6n^3+6n^2-n(n+1)(2n+1)-3n(n+1)}{12}\\
&=
(m-p)\dfrac{6n^3+6n^2-3n(2n^2+3n+1)+6n^3+6n^2-3n^2-3n}{12}\\
&=
(m-p)\dfrac{6n^3+6n^2-3n(2n^2+3n+1)+6n^3+6n^2-3n^2-3n}{12}\\
&=
(m-p)\dfrac{6n^3+6n^2-6n^3-9n^2-3n+6n^3+6n^2-3n^2-3n}{12}\\
&=
(m-p)\dfrac{n^3-n}{2}\\
\end{aligned} a i = 1 ∑ n b i = a i + 1 ∑ n x = p ∑ m − 1 ( a i + b i ) = ( m − p ) a i = 1 ∑ n b i = a i + 1 ∑ n ( a i + b i ) = ( m − p ) ( a i = 1 ∑ n b i = a i + 1 ∑ n a i + a i = 1 ∑ n b i = a i + 1 ∑ n b i ) = ( m − p ) ( 2 n 2 ( n + 1 ) − 6 n ( n + 1 ) ( 2 n + 1 ) + 12 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) ) = ( m − p ) ( 12 6 n 2 ( n + 1 ) − 12 2 n ( n + 1 ) ( 2 n + 1 ) + 12 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) ) = ( m − p ) 12 6 n 2 ( n + 1 ) − 2 n ( n + 1 ) ( 2 n + 1 ) + 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) = ( m − p ) 12 6 n 3 + 6 n 2 − 3 n ( 2 n 2 + 3 n + 1 ) + 6 n 3 + 6 n 2 − 3 n 2 − 3 n = ( m − p ) 12 6 n 3 + 6 n 2 − 3 n ( 2 n 2 + 3 n + 1 ) + 6 n 3 + 6 n 2 − 3 n 2 − 3 n = ( m − p ) 12 6 n 3 + 6 n 2 − 6 n 3 − 9 n 2 − 3 n + 6 n 3 + 6 n 2 − 3 n 2 − 3 n = ( m − p ) 2 n 3 − n
化简 ∑ a i = 1 n ∑ b i = a i + 1 n 2 b i \sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}2b_i ∑ a i = 1 n ∑ b i = a i + 1 n 2 b i :
∑ a i = 1 n ∑ b i = a i + 1 n 2 b i = 2 ∑ a i = 1 n ∑ b i = a i + 1 n b i = 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) 6 = 6 n 3 + 6 n 2 − 2 n 3 − 3 n 2 − n − 3 n 2 − 3 n 6 = 4 n 3 − 4 n 6 = 2 n 3 − 2 n 3 \begin{aligned}
\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}2b_i
&=
2\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}b_i\\
&=
\dfrac{6n^3+6n^2-n(n+1)(2n+1)-3n(n+1)}{6}\\
&=
\dfrac{6n^3+6n^2-2n^3-3n^2-n-3n^2-3n}{6}\\
&=
\dfrac{4n^3-4n}{6}\\
&=
\dfrac{2n^3-2n}{3}\\
\end{aligned} a i = 1 ∑ n b i = a i + 1 ∑ n 2 b i = 2 a i = 1 ∑ n b i = a i + 1 ∑ n b i = 6 6 n 3 + 6 n 2 − n ( n + 1 ) ( 2 n + 1 ) − 3 n ( n + 1 ) = 6 6 n 3 + 6 n 2 − 2 n 3 − 3 n 2 − n − 3 n 2 − 3 n = 6 4 n 3 − 4 n = 3 2 n 3 − 2 n
化简 ∑ b i = 1 n b i \sum_{b_i=1}^{n}b_i ∑ b i = 1 n b i :
∑ b i = 1 n b i = n ( n + 1 ) 2 \begin{aligned}
\sum_{b_i=1}^{n}b_i
&=
\dfrac{n(n+1)}{2}\\
\end{aligned} b i = 1 ∑ n b i = 2 n ( n + 1 )
化简 ∑ a i = 1 n ∑ x = 1 p − 1 π a i x m \sum_{a_i=1}^{n}\sum_{x=1}^{p-1}\dfrac{\pi a_ix}{m} ∑ a i = 1 n ∑ x = 1 p − 1 m π a i x :
∑ a i = 1 n ∑ x = 1 p − 1 π a i x m = π m ∑ a i = 1 n a i ∑ x = 1 p − 1 x = π m ∑ a i = 1 n a i ∑ x = 1 p − 1 x = π m ∑ a i = 1 n a i p ( p − 1 ) 2 = p ( p − 1 ) π 2 m ∑ a i = 1 n a i = n ( n + 1 ) p ( p − 1 ) π 4 m \begin{aligned}
\sum_{a_i=1}^{n}\sum_{x=1}^{p-1}\dfrac{\pi a_ix}{m}
&=
\dfrac{\pi}{m}\sum_{a_i=1}^{n}a_i\sum_{x=1}^{p-1}x\\
&=
\dfrac{\pi}{m}\sum_{a_i=1}^{n}a_i\sum_{x=1}^{p-1}x\\
&=
\dfrac{\pi}{m}\sum_{a_i=1}^{n}a_i\dfrac{p(p-1)}{2}\\
&=
\dfrac{p(p-1)\pi}{2m}\sum_{a_i=1}^{n}a_i\\
&=
\dfrac{n(n+1)p(p-1)\pi}{4m}\\
\end{aligned} a i = 1 ∑ n x = 1 ∑ p − 1 m π a i x = m π a i = 1 ∑ n a i x = 1 ∑ p − 1 x = m π a i = 1 ∑ n a i x = 1 ∑ p − 1 x = m π a i = 1 ∑ n a i 2 p ( p − 1 ) = 2 m p ( p − 1 ) π a i = 1 ∑ n a i = 4 m n ( n + 1 ) p ( p − 1 ) π
化简 ∑ a i = 1 n ∑ x = p m − 1 2 a i \sum_{a_i=1}^{n}\sum_{x=p}^{m-1}2a_i ∑ a i = 1 n ∑ x = p m − 1 2 a i :
∑ a i = 1 n ∑ x = p m − 1 2 a i = 2 ∑ a i = 1 n ∑ x = p m − 1 a i = 2 ( m − p ) ∑ a i = 1 n a i = ( m − p ) n ( n + 1 ) \begin{aligned}
\sum_{a_i=1}^{n}\sum_{x=p}^{m-1}2a_i
&=
2\sum_{a_i=1}^{n}\sum_{x=p}^{m-1}a_i\\
&=
2(m-p)\sum_{a_i=1}^{n}a_i\\
&=
(m-p)n(n+1)\\
\end{aligned} a i = 1 ∑ n x = p ∑ m − 1 2 a i = 2 a i = 1 ∑ n x = p ∑ m − 1 a i = 2 ( m − p ) a i = 1 ∑ n a i = ( m − p ) n ( n + 1 )
化简 ∑ a i = 1 n a i ) \sum_{a_i=1}^{n}a_i) ∑ a i = 1 n a i ) :
∑ a i = 1 n a i = n ( n + 1 ) 2 \begin{aligned}
\sum_{a_i=1}^{n}a_i
&=
\dfrac{n(n+1)}{2}\\
\end{aligned} a i = 1 ∑ n a i = 2 n ( n + 1 )
全部代入回原式:
a n s = 2 m × ( 2 × ( ∑ a i = 1 n ∑ b i = a i + 1 n ∑ x = 1 p − 1 ( b i − a i + π a i x m ) + ∑ a i = 1 n ∑ b i = a i + 1 n ∑ x = p m − 1 ( a i + b i ) ) + ∑ a i = 1 n ∑ b i = a i + 1 n 2 b i + ∑ b i = 1 n b i + ∑ a i = 1 n ∑ x = 1 p − 1 π a i x m + ∑ a i = 1 n ∑ x = p m − 1 2 a i + ∑ a i = 1 n a i ) = 2 m × ( 2 × ( ( p − 1 ) ( n 3 − n ) ( p π + 2 m 12 m ) + ( m − p ) n 3 − n 2 ) + 2 n 3 − 2 n 3 + n ( n + 1 ) 2 + n ( n + 1 ) p ( p − 1 ) π 4 m + ( m − p ) n ( n + 1 ) + n ( n + 1 ) 2 ) = 2 m × ( ( p − 1 ) ( n 3 − n ) ( p π + 2 m 6 m ) + ( m − p ) ( n 3 − n ) + 2 n 3 − 2 n 3 + n ( n + 1 ) 2 + n ( n + 1 ) p ( p − 1 ) π 4 m + ( m − p ) n ( n + 1 ) + n ( n + 1 ) 2 ) = 1 6 ( 2 ( p − 1 ) ( n 3 − n ) ( p π + 2 m ) + 12 m ( m − p ) ( n 3 − n ) + 4 m ( 2 n 3 − 2 n ) + 6 m n ( n + 1 ) + 3 n ( n + 1 ) p ( p − 1 ) π + 12 m ( m − p ) n ( n + 1 ) + 6 m n ( n + 1 ) ) = 1 6 ( 2 ( p − 1 ) ( p n 3 π + 2 m n 3 − p n π − 2 m n ) + 12 m ( m n 3 − m n − p n 3 + p n ) + 8 m n 3 − 8 m n + 6 m n 2 + 6 m n + 3 n p ( n p − n + p − 1 ) π + 12 m n ( m n + m − p n − p ) + 6 m n 2 + 6 m n ) = 1 6 ( 2 ( p 2 n 3 π + 2 p m n 3 − p 2 n π − 2 p m n − p n 3 π − 2 m n 3 + p n π + 2 m n ) + 12 m 2 n 3 − 12 m 2 n − 12 p m n 3 + 12 p m n + 8 m n 3 − 8 m n + 6 m n 2 + 6 m n + ( 3 n 2 p 2 − 3 n 2 p + 3 n p 2 − 3 n p ) π + 12 m 2 n 2 + 12 m 2 n − 12 p m n 2 − 12 p m n + 6 m n 2 + 6 m n ) = 1 6 ( 2 p 2 n 3 π + 4 p m n 3 − 2 p 2 n π − 4 p m n − 2 p n 3 π − 4 m n 3 + 2 p n π + 4 m n + 12 m 2 n 3 − 12 m 2 n − 12 p m n 3 + 12 p m n + 8 m n 3 − 8 m n + 6 m n 2 + 6 m n + ( 3 n 2 p 2 − 3 n 2 p + 3 n p 2 − 3 n p ) π + 12 m 2 n 2 + 12 m 2 n − 12 p m n 2 − 12 p m n + 6 m n 2 + 6 m n ) = 1 6 ( 4 p m n 3 − 4 p m n − 4 m n 3 + 4 m n + 12 m 2 n 3 − 12 m 2 n − 12 p m n 3 + 12 p m n + 8 m n 3 − 8 m n + 6 m n 2 + 6 m n + 12 m 2 n 2 + 12 m 2 n − 12 p m n 2 − 12 p m n + 6 m n 2 + 6 m n + ( 3 n 2 p 2 − 3 n 2 p + 3 n p 2 − 3 n p ) π + 2 p 2 n 3 π − 2 p 2 n π − 2 p n 3 π + 2 p n π ) = 1 6 ( 4 m n 3 − 8 p m n 3 − 4 p m n + 8 m n + 12 m 2 n 3 + 12 m n 2 + 12 m 2 n 2 − 12 p m n 2 + ( 3 n 2 p 2 − 3 n 2 p + n p 2 − n p + 2 p 2 n 3 − 2 p n 3 ) π ) \begin{aligned}
ans
&=
2m\times(
2\times(
\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}\sum_{x=1}^{p-1}(b_i-a_i+\dfrac{\pi a_ix}{m})
+\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}\sum_{x=p}^{m-1}(a_i+b_i))
+\sum_{a_i=1}^{n}\sum_{b_i=a_i+1}^{n}2b_i
+\sum_{b_i=1}^{n}b_i
+\sum_{a_i=1}^{n}\sum_{x=1}^{p-1}\dfrac{\pi a_ix}{m}
+\sum_{a_i=1}^{n}\sum_{x=p}^{m-1}2a_i
+\sum_{a_i=1}^{n}a_i) \\
&=
2m\times(
2\times((p-1)(n^3-n)(\dfrac{p\pi+2m}{12m})
+(m-p)\dfrac{n^3-n}{2})
+\dfrac{2n^3-2n}{3}
+\dfrac{n(n+1)}{2}
+\dfrac{n(n+1)p(p-1)\pi}{4m}
+(m-p)n(n+1)
+\dfrac{n(n+1)}{2})\\
&=
2m\times(
(p-1)(n^3-n)(\dfrac{p\pi+2m}{6m})
+(m-p)(n^3-n)
+\dfrac{2n^3-2n}{3}
+\dfrac{n(n+1)}{2}
+\dfrac{n(n+1)p(p-1)\pi}{4m}
+(m-p)n(n+1)
+\dfrac{n(n+1)}{2})\\
&=
\dfrac{1}{6}(
2(p-1)(n^3-n)(p\pi+2m)
+12m(m-p)(n^3-n)
+4m(2n^3-2n)
+6mn(n+1)
+3n(n+1)p(p-1)\pi
+12m(m-p)n(n+1)
+6mn(n+1))\\
&=
\dfrac{1}{6}(
2(p-1)(pn^3\pi+2mn^3-pn\pi-2mn)
+12m(mn^3-mn-pn^3+pn)
+8mn^3-8mn
+6mn^2+6mn
+3np(np-n+p-1)\pi
+12mn(mn+m-pn-p)
+6mn^2+6mn)\\
&=
\dfrac{1}{6}(
2(p^2n^3\pi+2pmn^3-p^2n\pi-2pmn-pn^3\pi-2mn^3+pn\pi+2mn)
+12m^2n^3-12m^2n-12pmn^3+12pmn
+8mn^3-8mn
+6mn^2+6mn
+(3n^2p^2-3n^2p+3np^2-3np)\pi
+12m^2n^2+12m^2n-12pmn^2-12pmn
+6mn^2+6mn)\\
&=
\dfrac{1}{6}(
2p^2n^3\pi
+4pmn^3
-2p^2n\pi
-4pmn
-2pn^3\pi
-4mn^3
+2pn\pi
+4mn
+12m^2n^3
-12m^2n
-12pmn^3
+12pmn
+8mn^3-8mn
+6mn^2+6mn
+(3n^2p^2-3n^2p+3np^2-3np)\pi
+12m^2n^2
+12m^2n
-12pmn^2
-12pmn
+6mn^2
+6mn)\\
&=
\dfrac{1}{6}(
4pmn^3
-4pmn
-4mn^3
+4mn
+12m^2n^3
-12m^2n
-12pmn^3
+12pmn
+8mn^3-8mn
+6mn^2+6mn
+12m^2n^2
+12m^2n
-12pmn^2
-12pmn
+6mn^2
+6mn
+(3n^2p^2-3n^2p+3np^2-3np)\pi
+2p^2n^3\pi
-2p^2n\pi
-2pn^3\pi
+2pn\pi)\\
&=
\dfrac{1}{6}(4mn^3-8pmn^3-4pmn+8mn+12m^2n^3+12mn^2+12m^2n^2-12pmn^2
+(3n^2p^2-3n^2p+np^2-np+2p^2n^3-2pn^3)\pi)\\
\end{aligned} an s = 2 m × ( 2 × ( a i = 1 ∑ n b i = a i + 1 ∑ n x = 1 ∑ p − 1 ( b i − a i + m π a i x ) + a i = 1 ∑ n b i = a i + 1 ∑ n x = p ∑ m − 1 ( a i + b i )) + a i = 1 ∑ n b i = a i + 1 ∑ n 2 b i + b i = 1 ∑ n b i + a i = 1 ∑ n x = 1 ∑ p − 1 m π a i x + a i = 1 ∑ n x = p ∑ m − 1 2 a i + a i = 1 ∑ n a i ) = 2 m × ( 2 × (( p − 1 ) ( n 3 − n ) ( 12 m p π + 2 m ) + ( m − p ) 2 n 3 − n ) + 3 2 n 3 − 2 n + 2 n ( n + 1 ) + 4 m n ( n + 1 ) p ( p − 1 ) π + ( m − p ) n ( n + 1 ) + 2 n ( n + 1 ) ) = 2 m × (( p − 1 ) ( n 3 − n ) ( 6 m p π + 2 m ) + ( m − p ) ( n 3 − n ) + 3 2 n 3 − 2 n + 2 n ( n + 1 ) + 4 m n ( n + 1 ) p ( p − 1 ) π + ( m − p ) n ( n + 1 ) + 2 n ( n + 1 ) ) = 6 1 ( 2 ( p − 1 ) ( n 3 − n ) ( p π + 2 m ) + 12 m ( m − p ) ( n 3 − n ) + 4 m ( 2 n 3 − 2 n ) + 6 mn ( n + 1 ) + 3 n ( n + 1 ) p ( p − 1 ) π + 12 m ( m − p ) n ( n + 1 ) + 6 mn ( n + 1 )) = 6 1 ( 2 ( p − 1 ) ( p n 3 π + 2 m n 3 − p nπ − 2 mn ) + 12 m ( m n 3 − mn − p n 3 + p n ) + 8 m n 3 − 8 mn + 6 m n 2 + 6 mn + 3 n p ( n p − n + p − 1 ) π + 12 mn ( mn + m − p n − p ) + 6 m n 2 + 6 mn ) = 6 1 ( 2 ( p 2 n 3 π + 2 p m n 3 − p 2 nπ − 2 p mn − p n 3 π − 2 m n 3 + p nπ + 2 mn ) + 12 m 2 n 3 − 12 m 2 n − 12 p m n 3 + 12 p mn + 8 m n 3 − 8 mn + 6 m n 2 + 6 mn + ( 3 n 2 p 2 − 3 n 2 p + 3 n p 2 − 3 n p ) π + 12 m 2 n 2 + 12 m 2 n − 12 p m n 2 − 12 p mn + 6 m n 2 + 6 mn ) = 6 1 ( 2 p 2 n 3 π + 4 p m n 3 − 2 p 2 nπ − 4 p mn − 2 p n 3 π − 4 m n 3 + 2 p nπ + 4 mn + 12 m 2 n 3 − 12 m 2 n − 12 p m n 3 + 12 p mn + 8 m n 3 − 8 mn + 6 m n 2 + 6 mn + ( 3 n 2 p 2 − 3 n 2 p + 3 n p 2 − 3 n p ) π + 12 m 2 n 2 + 12 m 2 n − 12 p m n 2 − 12 p mn + 6 m n 2 + 6 mn ) = 6 1 ( 4 p m n 3 − 4 p mn − 4 m n 3 + 4 mn + 12 m 2 n 3 − 12 m 2 n − 12 p m n 3 + 12 p mn + 8 m n 3 − 8 mn + 6 m n 2 + 6 mn + 12 m 2 n 2 + 12 m 2 n − 12 p m n 2 − 12 p mn + 6 m n 2 + 6 mn + ( 3 n 2 p 2 − 3 n 2 p + 3 n p 2 − 3 n p ) π + 2 p 2 n 3 π − 2 p 2 nπ − 2 p n 3 π + 2 p nπ ) = 6 1 ( 4 m n 3 − 8 p m n 3 − 4 p mn + 8 mn + 12 m 2 n 3 + 12 m n 2 + 12 m 2 n 2 − 12 p m n 2 + ( 3 n 2 p 2 − 3 n 2 p + n p 2 − n p + 2 p 2 n 3 − 2 p n 3 ) π )
最后得出结论:
q = 1 6 ( 4 m n 3 − 8 p m n 3 − 4 p m n + 8 m n + 12 m 2 n 3 + 12 m n 2 + 12 m 2 n 2 − 12 p m n 2 ) q=\dfrac{1}{6}(4mn^3-8pmn^3-4pmn+8mn+12m^2n^3+12mn^2+12m^2n^2-12pmn^2) q = 6 1 ( 4 m n 3 − 8 p m n 3 − 4 p mn + 8 mn + 12 m 2 n 3 + 12 m n 2 + 12 m 2 n 2 − 12 p m n 2 )
p = 1 6 ( 3 n 2 p 2 − 3 n 2 p + n p 2 − n p + 2 p 2 n 3 − 2 p n 3 ) p=\dfrac{1}{6}(3n^2p^2-3n^2p+np^2-np+2p^2n^3-2pn^3) p = 6 1 ( 3 n 2 p 2 − 3 n 2 p + n p 2 − n p + 2 p 2 n 3 − 2 p n 3 )
参考代码
# include <bits/stdc++.h> using namespace std ; long long n , m ; inline long long tw ( long long x ) return x * x ; inline long long th ( long long x ) return x * x * x ; int main ( ) { ios :: sync_with_stdio ( false ) ; cin . tie ( nullptr ) ; cin >> n >> m ; long long p = 2 * m / acos ( - 1 ) + 1 , p , q ; q = ( ( 4 * m * th ( n ) - 8 * p * m * th ( n ) - 4 * p * m * n + 8 * m * n + 12 * tw ( m ) * th ( n ) + 12 * m * tw ( n ) + 12 * tw ( m ) * tw ( n ) - 12 * p * m * tw ( n ) ) / 6 - ( ( m * n ) * ( n + 1 ) ) * ( m == 1 ) ) ; p = ( ( 3 * tw ( n ) * tw ( p ) - 3 * tw ( n ) * p + n * tw ( p ) - n * p + 2 * tw ( p ) * th ( n ) - 2 * p * th ( n ) ) / 6 ) ; cout << fixed << setprecision ( 12 ) << p * acos ( - 1 ) + q << '\n' ; return 0 ; }